AHRS开源融合算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//=====================================================================================================
// MadgwickAHRS.c
//=====================================================================================================
//
// Implementation of Madgwick's IMU and AHRS algorithms.
// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
//
// Date         Author          Notes
// 29/09/2011   SOH Madgwick    Initial release
// 02/10/2011   SOH Madgwick    Optimised for reduced CPU load
// 19/02/2012   SOH Madgwick    Magnetometer measurement is normalised
//
//=====================================================================================================

//---------------------------------------------------------------------------------------------------
// Header files

#include "MadgwickAHRS.h"
#include <math.h>

//---------------------------------------------------------------------------------------------------
// Definitions

#define sampleFreq  512.0f      // sample frequency in Hz
#define betaDef     0.1f        // 2 * proportional gain

//---------------------------------------------------------------------------------------------------
// Variable definitions

volatile float beta = betaDef;                              // 2 * proportional gain (Kp)
volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f;  // quaternion of sensor frame relative to auxiliary frame

//---------------------------------------------------------------------------------------------------
// Function declarations

float invSqrt(float x);

//====================================================================================================
// Functions

//---------------------------------------------------------------------------------------------------
// AHRS algorithm update

void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {<!-- -->
    float recipNorm;
    float s0, s1, s2, s3;
    float qDot1, qDot2, qDot3, qDot4;
    float hx, hy;
    float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;

    // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
    if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {<!-- -->
        MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az);
        return;
    }

    // Rate of change of quaternion from gyroscope
    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);

    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {<!-- -->

        // Normalise accelerometer measurement
        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
        ax *= recipNorm;
        ay *= recipNorm;
        az *= recipNorm;  

        // Normalise magnetometer measurement
        recipNorm = invSqrt(mx * mx + my * my + mz * mz);
        mx *= recipNorm;
        my *= recipNorm;
        mz *= recipNorm;

        // Auxiliary variables to avoid repeated arithmetic
        _2q0mx = 2.0f * q0 * mx;
        _2q0my = 2.0f * q0 * my;
        _2q0mz = 2.0f * q0 * mz;
        _2q1mx = 2.0f * q1 * mx;
        _2q0 = 2.0f * q0;
        _2q1 = 2.0f * q1;
        _2q2 = 2.0f * q2;
        _2q3 = 2.0f * q3;
        _2q0q2 = 2.0f * q0 * q2;
        _2q2q3 = 2.0f * q2 * q3;
        q0q0 = q0 * q0;
        q0q1 = q0 * q1;
        q0q2 = q0 * q2;
        q0q3 = q0 * q3;
        q1q1 = q1 * q1;
        q1q2 = q1 * q2;
        q1q3 = q1 * q3;
        q2q2 = q2 * q2;
        q2q3 = q2 * q3;
        q3q3 = q3 * q3;

        // Reference direction of Earth's magnetic field
        hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
        hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
        _2bx = sqrt(hx * hx + hy * hy);
        _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
        _4bx = 2.0f * _2bx;
        _4bz = 2.0f * _2bz;

        // Gradient decent algorithm corrective step
        s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
        s0 *= recipNorm;
        s1 *= recipNorm;
        s2 *= recipNorm;
        s3 *= recipNorm;

        // Apply feedback step
        qDot1 -= beta * s0;
        qDot2 -= beta * s1;
        qDot3 -= beta * s2;
        qDot4 -= beta * s3;
    }

    // Integrate rate of change of quaternion to yield quaternion
    q0 += qDot1 * (1.0f / sampleFreq);
    q1 += qDot2 * (1.0f / sampleFreq);
    q2 += qDot3 * (1.0f / sampleFreq);
    q3 += qDot4 * (1.0f / sampleFreq);

    // Normalise quaternion
    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
    q0 *= recipNorm;
    q1 *= recipNorm;
    q2 *= recipNorm;
    q3 *= recipNorm;
}

//---------------------------------------------------------------------------------------------------
// IMU algorithm update

void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {<!-- -->
    float recipNorm;
    float s0, s1, s2, s3;
    float qDot1, qDot2, qDot3, qDot4;
    float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;

    // Rate of change of quaternion from gyroscope
    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);

    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {<!-- -->

        // Normalise accelerometer measurement
        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
        ax *= recipNorm;
        ay *= recipNorm;
        az *= recipNorm;  

        // Auxiliary variables to avoid repeated arithmetic
        _2q0 = 2.0f * q0;
        _2q1 = 2.0f * q1;
        _2q2 = 2.0f * q2;
        _2q3 = 2.0f * q3;
        _4q0 = 4.0f * q0;
        _4q1 = 4.0f * q1;
        _4q2 = 4.0f * q2;
        _8q1 = 8.0f * q1;
        _8q2 = 8.0f * q2;
        q0q0 = q0 * q0;
        q1q1 = q1 * q1;
        q2q2 = q2 * q2;
        q3q3 = q3 * q3;

        // Gradient decent algorithm corrective step
        s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
        s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
        s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
        s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
        s0 *= recipNorm;
        s1 *= recipNorm;
        s2 *= recipNorm;
        s3 *= recipNorm;

        // Apply feedback step
        qDot1 -= beta * s0;
        qDot2 -= beta * s1;
        qDot3 -= beta * s2;
        qDot4 -= beta * s3;
    }

    // Integrate rate of change of quaternion to yield quaternion
    q0 += qDot1 * (1.0f / sampleFreq);
    q1 += qDot2 * (1.0f / sampleFreq);
    q2 += qDot3 * (1.0f / sampleFreq);
    q3 += qDot4 * (1.0f / sampleFreq);

    // Normalise quaternion
    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
    q0 *= recipNorm;
    q1 *= recipNorm;
    q2 *= recipNorm;
    q3 *= recipNorm;
}


int instability_fix = 1;

//---------------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root

float invSqrt(float x) {<!-- -->
    if (instability_fix == 0)
    {<!-- -->
        /* original code */
        float halfx = 0.5f * x;
        float y = x;
        long i = *(long*)&y;
        i = 0x5f3759df - (i>>1);
        y = *(float*)&i;
        y = y * (1.5f - (halfx * y * y));
        return y;
    }
    else if (instability_fix == 1)
    {<!-- -->
        /* close-to-optimal  method with low cost from http://pizer.wordpress.com/2008/10/12/fast-inverse-square-root */
        unsigned int i = 0x5F1F1412 - (*(unsigned int*)&x >> 1);
        float tmp = *(float*)&i;
        return tmp * (1.69000231f - 0.714158168f * x * tmp * tmp);
    }
    else
    {<!-- -->
        /* optimal but expensive method: */
        return 1.0f / sqrtf(x);
    }
}

//====================================================================================================
// END OF CODE
//====================================================================================================