python-pcl简易文档(不包含自建函数与pcl_grabber包)

python-pcl简易文档

    • pcl模块
    • 一些常量

pcl模块

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
├──── pcl.find_library(name)
None
├──── pcl.save(cloud, path, format=None, binary=False)
Save pointcloud to file.
    Format should be "pcd", "ply", or None to infer from the pathname.
   
├──── pcl._infer_format(path, format)
None
├──── pcl._encode(path)
None
├──── pcl.load_XYZRGBA(path, format=None)

    Load pointcloud from path.
    Currently supports PCD and PLY files.
    Format should be "pcd", "ply", "obj", or None to infer from the pathname.
   
├──── pcl.save_PointNormal(cloud, path, format=None, binary=False)

    Save pointcloud to file.
    Format should be "pcd", "ply", or None to infer from the pathname.
   
├──── pcl.load_XYZI(path, format=None)
Load pointcloud from path.
    Currently supports PCD and PLY files.
    Format should be "pcd", "ply", "obj", or None to infer from the pathname.
   
├──── pcl.load_PointWithViewpoint(path, format=None)

    Load pointcloud from path.
    Currently supports PCD and PLY files.
    Format should be "pcd", "ply", "obj", or None to infer from the pathname.
   
├──── pcl.load_XYZRGB(path, format=None)

    Load pointcloud from path.
    Currently supports PCD and PLY files.
    Format should be "pcd", "ply", "obj", or None to infer from the pathname.
   
├──── pcl.save_XYZRGBA(cloud, path, format=None, binary=False)
Save pointcloud to file.
    Format should be "pcd", "ply", or None to infer from the pathname.
   
├──── pcl.load(path, format=None)
Load pointcloud from path.

    Currently supports PCD and PLY files.
    Format should be "pcd", "ply", "obj", or None to infer from the pathname.
   
├──── pcl.RadiusOutlierRemoval
   └──── set_radius_search(self, double radius)
   └──── set_MinNeighborsInRadius(self, int min_pts)
   └──── get_radius_search(self)
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── get_MinNeighborsInRadius(self)
├──── pcl.SampleConsensusModelRegistration
├──── pcl.OctreePointCloudSearch_PointXYZRGBA
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
   └──── radius_search(self, point, double radius, unsigned int max_nn=0)

        Search for all neighbors of query point that are within a given radius
├──── pcl.Segmentation
   └──── set_method_type(self, int m)
   └──── set_distance_threshold(self, float d)
   └──── set_MaxIterations(self, int count)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.KdTreeFLANN_PointXYZI
   └──── nearest_k_search_for_point(self, PointCloud_PointXYZI pc, int index, int k=1)

        Find the k nearest neighbours and squared distances for the point
        at pc[index]
   └──── nearest_k_search_for_cloud(self, PointCloud_PointXYZI pc, int k=1)

        Find the k nearest neighbours and squared distances for all points
        in the pointcloud
├──── pcl.StatisticalOutlierRemovalFilter_PointXYZRGB
   └──── set_mean_k(self, int k)

        Set the number of points (k) to use for mean distance estimation
   └──── set_negative(self, bool negative)

        Set whether the indices should be returned, or all points except the indices
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud_PointXYZRGB pc)
   └──── set_std_dev_mul_thresh(self, double std_mul)

        Set the standard deviation multiplier threshold
├──── pcl.ConcaveHull_PointXYZRGBA
   └──── set_Alpha(self, double d)
   └──── reconstruct(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.Segmentation_PointXYZI
   └──── set_method_type(self, int m)
   └──── set_distance_threshold(self, float d)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.NormalEstimation
   └──── compute(self)
   └──── set_SearchMethod(self, KdTree kdtree)
   └──── set_RadiusSearch(self, double param)
   └──── set_KSearch(self, int param)
├──── pcl.RandomSampleConsensus
   └──── set_DistanceThreshold(self, double param)
   └──── get_Inliers(self)
   └──── computeModel(self)
├──── pcl.PointCloud_PointXYZRGB
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 4-tuples
       
   └──── __reduce__(self)
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── _to_ply_file(self, const char *f, bool binary=False)
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── extract(self, pyindices, bool negative=False)

        Given a list of indices of points in the pointcloud, return a
        new pointcloud containing only those points
   └──── make_voxel_grid_filter(self)

        Return a pcl
   └──── make_segmenter(self)

        Return a pcl
   └──── _from_obj_file(self, const char *s)
   └──── to_file(self, const char *fname, bool ascii=True)
Save pointcloud to a file in PCD format
   └──── make_passthrough_filter(self)

        Return a pcl
   └──── _from_ply_file(self, const char *s)
   └──── make_kdtree_flann(self)

        Return a pcl
   └──── _from_pcd_file(self, const char *s)
   └──── resize(self, npy_intp x)
   └──── make_statistical_outlier_filter(self)

        Return a pcl
   └──── from_file(self, char *f)

        Fill this pointcloud from a file (a local path)
   └──── _to_pcd_file(self, const char *f, bool binary=False)
   └──── to_list(self)

        Return this object as a list of 4-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (3-tuple) at the given row/column
       
   └──── make_moving_least_squares(self)

        Return a pcl
   └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
├──── pcl.OctreePointCloud2Buf_PointXYZRGB
   └──── set_input_cloud(self, PointCloud_PointXYZRGB pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.ConcaveHull
   └──── set_Alpha(self, double d)
   └──── reconstruct(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.OctreePointCloud_PointXYZI
   └──── set_input_cloud(self, PointCloud_PointXYZI pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.ConditionalRemoval
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_KeepOrganized(self, flag)
├──── pcl.PointCloud_Normal
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 4-tuples
       
   └──── __reduce__(self)
   └──── to_list(self)

        Return this object as a list of 4-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (4-tuple) at the given row/column
       
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── resize(self, npy_intp x)
├──── pcl.KdTreeFLANN_PointXYZRGB
   └──── nearest_k_search_for_point(self, PointCloud_PointXYZRGB pc, int index, int k=1)

        Find the k nearest neighbours and squared distances for the point
        at pc[index]
   └──── nearest_k_search_for_cloud(self, PointCloud_PointXYZRGB pc, int k=1)

        Find the k nearest neighbours and squared distances for all points
        in the pointcloud
├──── pcl.OctreePointCloud2Buf
   └──── set_input_cloud(self, PointCloud pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.Vertices
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 3-tuples
       
   └──── to_list(self)

        Return this object as a list of 3-tuples
       
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── resize(self, npy_intp x)
├──── pcl.PointCloud_PointXYZI
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 4-tuples
       
   └──── __reduce__(self)
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── _to_ply_file(self, const char *f, bool binary=False)
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── extract(self, pyindices, bool negative=False)

        Given a list of indices of points in the pointcloud, return a
        new pointcloud containing only those points
   └──── make_voxel_grid_filter(self)

        Return a pcl
   └──── make_segmenter(self)

        Return a pcl
   └──── _from_obj_file(self, const char *s)
   └──── to_file(self, const char *fname, bool ascii=True)
Save pointcloud to a file in PCD format
   └──── make_passthrough_filter(self)

        Return a pcl
   └──── _from_ply_file(self, const char *s)
   └──── make_kdtree_flann(self)

        Return a pcl
   └──── _from_pcd_file(self, const char *s)
   └──── resize(self, npy_intp x)
   └──── make_statistical_outlier_filter(self)

        Return a pcl
   └──── from_file(self, char *f)

        Fill this pointcloud from a file (a local path)
   └──── _to_pcd_file(self, const char *f, bool binary=False)
   └──── to_list(self)

        Return this object as a list of 4-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (4-tuple) at the given row/column
       
   └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
├──── pcl.SampleConsensusModelStick
├──── pcl.StatisticalOutlierRemovalFilter_PointXYZI
   └──── set_mean_k(self, int k)

        Set the number of points (k) to use for mean distance estimation
   └──── set_negative(self, bool negative)

        Set whether the indices should be returned, or all points except the indices
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud_PointXYZI pc)
   └──── set_std_dev_mul_thresh(self, double std_mul)

        Set the standard deviation multiplier threshold
├──── pcl.OctreePointCloud
   └──── set_input_cloud(self, PointCloud pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.RegionGrowing
   └──── get_SmoothModeFlag(self)
   └──── get_ResidualThreshold(self)
   └──── get_MaxClusterSize(self)
   └──── get_ResidualTestFlag(self)
   └──── get_MinClusterSize(self)
   └──── set_MinClusterSize(self, int min)
   └──── set_CurvatureThreshold(self, float curvature)
   └──── get_CurvatureTestFlag(self)
   └──── get_SmoothnessThreshold(self)
   └──── get_SegmentFromPoint(self, int index)
   └──── set_MaxClusterSize(self, int max)
   └──── set_ResidualThreshold(self, float residual)
   └──── set_SmoothModeFlag(self, bool value)
   └──── set_SearchMethod(self, KdTree kdtree)
   └──── set_ResidualTestFlag(self, bool value)
   └──── set_InputNormals(self, PointCloud_Normal normals)
   └──── get_CurvatureThreshold(self)
   └──── set_SmoothnessThreshold(self, float theta)
   └──── set_NumberOfNeighbours(self, int neighbour_number)
   └──── set_CurvatureTestFlag(self, bool value)
   └──── Extract(self)
   └──── get_NumberOfNeighbours(self)
├──── pcl.OctreePointCloudChangeDetector_PointXYZRGBA
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── get_PointIndicesFromNewVoxels(self)
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
├──── pcl.EuclideanClusterExtraction
   └──── set_ClusterTolerance(self, double b)
   └──── set_SearchMethod(self, KdTree kdtree)
   └──── set_MinClusterSize(self, int min)
   └──── set_MaxClusterSize(self, int max)
   └──── Extract(self)
├──── pcl.VoxelGridFilter
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.OctreePointCloud_PointXYZRGB
   └──── set_input_cloud(self, PointCloud_PointXYZRGB pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.OctreePointCloud2Buf_PointXYZRGBA
   └──── set_input_cloud(self, PointCloud_PointXYZRGBA pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.Segmentation_PointXYZRGB
   └──── set_method_type(self, int m)
   └──── set_distance_threshold(self, float d)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.Segmentation_PointXYZRGBA_Normal
   └──── set_method_type(self, int m)
   └──── get_eps_angle(self)
   └──── get_min_max_opening_angle(self)
   └──── set_distance_threshold(self, float d)
   └──── set_axis(self, double ax1, double ax2, double ax3)
   └──── set_radius_limits(self, float f1, float f2)
   └──── get_axis(self)
   └──── set_max_iterations(self, int i)
   └──── set_min_max_opening_angle(self, double min_angle, double max_angle)

        Set the minimum and maximum cone opening angles in radians for a cone model
   └──── set_eps_angle(self, double ea)
   └──── set_normal_distance_weight(self, float f)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.StatisticalOutlierRemovalFilter
   └──── set_mean_k(self, int k)

        Set the number of points (k) to use for mean distance estimation
   └──── set_negative(self, bool negative)

        Set whether the indices should be returned, or all points except the indices
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud pc)
   └──── set_std_dev_mul_thresh(self, double std_mul)

        Set the standard deviation multiplier threshold
├──── pcl.SampleConsensusModelLine
├──── pcl.VoxelGridFilter_PointXYZI
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.PassThroughFilter_PointXYZRGBA
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new PointCloud_PointXYZRGBA
       
   └──── set_filter_limits(self, float filter_min, float filter_max)
   └──── set_filter_field_name(self, field_name)
├──── pcl.OctreePointCloudSearch_PointXYZI
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
   └──── radius_search(self, point, double radius, unsigned int max_nn=0)

        Search for all neighbors of query point that are within a given radius
├──── pcl.MovingLeastSquares_PointXYZRGB
   └──── set_polynomial_fit(self, bool fit)

        Sets whether the surface and normal are approximated using a polynomial,
        or only via tangent estimation
   └──── set_polynomial_order(self, bool order)

        Set the order of the polynomial to be fit
   └──── set_search_radius(self, double radius)

        Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting
   └──── process(self)

        Apply the smoothing according to the previously set values and return
        a new pointcloud
       
├──── pcl.PointCloud_PointWithViewpoint
   └──── from_file(self, char *f)

        Fill this pointcloud from a file (a local path)
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 6-tuples
       
   └──── __reduce__(self)
   └──── to_list(self)

        Return this object as a list of 6-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (6-tuple) at the given row/column
       
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── _from_ply_file(self, const char *s)
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── to_file(self, const char *fname, bool ascii=True)

        Save pointcloud to a file in PCD format
   └──── _from_pcd_file(self, const char *s)
   └──── resize(self, npy_intp x)
├──── pcl.SegmentationNormal
   └──── set_method_type(self, int m)
   └──── get_eps_angle(self)
   └──── get_min_max_opening_angle(self)
   └──── set_distance_threshold(self, float d)
   └──── set_axis(self, double ax1, double ax2, double ax3)
   └──── set_radius_limits(self, float f1, float f2)
   └──── get_axis(self)
   └──── set_max_iterations(self, int i)
   └──── set_min_max_opening_angle(self, double min_angle, double max_angle)

        Set the minimum and maximum cone opening angles in radians for a cone model
   └──── set_eps_angle(self, double ea)
   └──── set_normal_distance_weight(self, float f)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.OctreePointCloud_PointXYZRGBA
   └──── set_input_cloud(self, PointCloud_PointXYZRGBA pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.VoxelGridFilter_PointXYZRGB
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.OctreePointCloudSearch
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── nearest_k_search_for_point(self, PointCloud pc, int index, int k=1)

        Find the k nearest neighbours and squared distances for the point
        at pc[index]
   └──── VoxelSearch(self, PointCloud pc)

        Search for all neighbors of query point that are within a given voxel
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── nearest_k_search_for_cloud(self, PointCloud pc, int k=1)

        Find the k nearest neighbours and squared distances for all points
        in the pointcloud
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
   └──── radius_search(self, point, double radius, unsigned int max_nn=0)

        Search for all neighbors of query point that are within a given radius
├──── pcl.OctreePointCloudChangeDetector_PointXYZI
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── get_PointIndicesFromNewVoxels(self)
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
├──── pcl.KdTreeFLANN_PointXYZRGBA
   └──── nearest_k_search_for_point(self, PointCloud_PointXYZRGBA pc, int index, int k=1)

        Find the k nearest neighbours and squared distances for the point
        at pc[index]
   └──── nearest_k_search_for_cloud(self, PointCloud_PointXYZRGBA pc, int k=1)

        Find the k nearest neighbours and squared distances for all points
        in the pointcloud
├──── pcl.PointCloud_PointNormal
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 4-tuples
       
   └──── __reduce__(self)
   └──── to_list(self)

        Return this object as a list of 3-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (3-tuple) at the given row/column
       
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── resize(self, npy_intp x)
├──── pcl.StatisticalOutlierRemovalFilter_PointXYZRGBA
   └──── set_mean_k(self, int k)

        Set the number of points (k) to use for mean distance estimation
   └──── set_negative(self, bool negative)

        Set whether the indices should be returned, or all points except the indices
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud_PointXYZRGBA pc)
   └──── set_std_dev_mul_thresh(self, double std_mul)

        Set the standard deviation multiplier threshold
├──── pcl.ConditionAnd
   └──── add_Comparison2(self, field_name, CompareOp2 compOp, double thresh)
├──── pcl.ConcaveHull_PointXYZRGB
   └──── set_Alpha(self, double d)
   └──── reconstruct(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.GeneralizedIterativeClosestPoint
   └──── gicp(self, PointCloud source, PointCloud target, max_iter=None)

        Align source to target using generalized iterative closest point (GICP)
├──── pcl.MovingLeastSquares
   └──── set_polynomial_fit(self, bool fit)

        Sets whether the surface and normal are approximated using a polynomial,
        or only via tangent estimation
   └──── set_polynomial_order(self, bool order)

        Set the order of the polynomial to be fit
   └──── set_search_radius(self, double radius)

        Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting
   └──── set_Search_Method(self, KdTree kdtree)
   └──── set_Compute_Normals(self, bool flag)
   └──── process(self)

        Apply the smoothing according to the previously set values and return
        a new PointCloud
       
├──── pcl.KdTree
├──── pcl.VFHEstimation
   └──── set_SearchMethod(self, KdTree kdtree)
   └──── set_KSearch(self, int param)
├──── pcl.IterativeClosestPointNonLinear
   └──── icp_nl(self, PointCloud source, PointCloud target, max_iter=None)

        Align source to target using generalized non-linear ICP (ICP-NL)
├──── pcl.ProjectInliers
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── get_copy_all_data(self)
   └──── get_model_type(self)
   └──── set_model_type(self, SacModel m)
   └──── set_copy_all_data(self, bool m)
├──── pcl.ApproximateVoxelGrid_PointXYZRGBA
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud_PointXYZRGBA pc)
├──── pcl.ApproximateVoxelGrid_PointXYZRGB
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud_PointXYZRGB pc)
├──── pcl.OctreePointCloud2Buf_PointXYZI
   └──── set_input_cloud(self, PointCloud_PointXYZI pc)

        Provide a pointer to the input data set
   └──── delete_tree(self)

        Delete the octree structure and its leaf nodes
├──── pcl.ApproximateVoxelGrid_PointXYZI
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud_PointXYZI pc)
├──── pcl.OctreePointCloudChangeDetector_PointXYZRGB
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── get_PointIndicesFromNewVoxels(self)
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
├──── pcl.SampleConsensusModelPlane
├──── pcl.PointCloud_PointXYZRGBA
   └──── from_list(self, _list)

       Fill this pointcloud from a list of 4-tuples
       
   └──── __reduce__(self)
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── _to_ply_file(self, const char *f, bool binary=False)
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── extract(self, pyindices, bool negative=False)

        Given a list of indices of points in the pointcloud, return a
        new pointcloud containing only those points
   └──── make_voxel_grid_filter(self)

        Return a pcl
   └──── make_segmenter(self)

        Return a pcl
   └──── _from_obj_file(self, const char *s)
   └──── to_file(self, const char *fname, bool ascii=True)
Save pointcloud to a file in PCD format
   └──── make_passthrough_filter(self)

        Return a pcl
   └──── _from_ply_file(self, const char *s)
   └──── make_kdtree_flann(self)

        Return a pcl
   └──── _from_pcd_file(self, const char *s)
   └──── resize(self, npy_intp x)
   └──── make_statistical_outlier_filter(self)

         Return a pcl
   └──── from_file(self, char *f)

        Fill this pointcloud from a file (a local path)
   └──── _to_pcd_file(self, const char *f, bool binary=False)
   └──── to_list(self)

        Return this object as a list of 3-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (3-tuple) at the given row/column
       
   └──── make_moving_least_squares(self)

        Return a pcl
   └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
├──── pcl.SampleConsensusModelSphere
├──── pcl.KdTreeFLANN
   └──── radius_search_for_cloud(self, PointCloud pc, double radius, unsigned int max_nn=0)

        Find the radius and squared distances for all points
        in the pointcloud
   └──── nearest_k_search_for_point(self, PointCloud pc, int index, int k=1)

        Find the k nearest neighbours and squared distances for the point
        at pc[index]
   └──── nearest_k_search_for_cloud(self, PointCloud pc, int k=1)

        Find the k nearest neighbours and squared distances for all points
        in the pointcloud
├──── pcl.SampleConsensusModelCylinder
├──── pcl.MomentOfInertiaEstimation
   └──── get_AABB(self)
   └──── get_EigenVectors(self)
   └──── compute(self)
   └──── get_EigenValues(self)
   └──── get_Eccentricity(self)
   └──── get_OBB(self)
   └──── set_InputCloud(self, PointCloud pc)
   └──── get_MassCenter(self)
   └──── get_MomentOfInertia(self)
├──── pcl.NormalDistributionsTransform
   └──── set_OulierRatio(self, double outlier_ratio)
   └──── get_TransformationProbability(self)
   └──── set_StepSize(self, double step_size)
   └──── get_OulierRatio(self)
   └──── set_InputTarget(self)
   └──── set_Resolution(self, float resolution)
   └──── get_FinalNumIteration(self)
   └──── get_Resolution(self)
   └──── get_StepSize(self)
├──── pcl.SampleConsensusModel
├──── pcl.CropBox
   └──── set_Rotation(self, rx, ry, rz)
   └──── set_Min(self, minx, miny, minz, mins)
   └──── get_Negative(self)
   └──── set_MinMax(self, minx, miny, minz, mins, maxx, maxy, maxz, maxs)
   └──── set_Negative(self, bool flag)
   └──── set_Max(self, maxx, maxy, maxz, maxs)
   └──── get_RemovedIndices(self)
   └──── filter(self)
   └──── set_Translation(self, tx, ty, tz)
   └──── set_InputCloud(self, PointCloud pc)
├──── pcl.MovingLeastSquares_PointXYZRGBA
   └──── set_polynomial_fit(self, bool fit)

        Sets whether the surface and normal are approximated using a polynomial,
        or only via tangent estimation
   └──── set_polynomial_order(self, bool order)

        Set the order of the polynomial to be fit
   └──── set_search_radius(self, double radius)

        Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting
   └──── process(self)

        Apply the smoothing according to the previously set values and return
        a new pointcloud
       
├──── pcl.IntegralImageNormalEstimation
   └──── set_NormalEstimation_Method_SIMPLE_3D_GRADIENT(self)
   └──── set_NormalEstimation_Method_COVARIANCE_MATRIX(self)
   └──── set_NormalSmoothingSize(self, double param)
   └──── set_NormalEstimation_Method_AVERAGE_3D_GRADIENT(self)
   └──── set_MaxDepthChange_Factor(self, double param)
   └──── set_NormalEstimation_Method_AVERAGE_DEPTH_CHANGE(self)
   └──── compute(self)
├──── pcl.VoxelGridFilter_PointXYZRGBA
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.Segmentation_PointXYZRGBA
   └──── set_method_type(self, int m)
   └──── set_distance_threshold(self, float d)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.PassThroughFilter
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_filter_limits(self, float filter_min, float filter_max)
   └──── set_filter_field_name(self, field_name)
├──── pcl.OctreePointCloudChangeDetector
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── get_PointIndicesFromNewVoxels(self)
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
   └──── switchBuffers(self)
├──── pcl.HarrisKeypoint3D
   └──── compute(self)
   └──── set_NonMaxSupression(self, bool param)
   └──── set_RadiusSearch(self, double param)
   └──── set_Radius(self, float param)
├──── pcl.ConcaveHull_PointXYZI
   └──── set_Alpha(self, double d)
   └──── reconstruct(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
├──── pcl.CropHull
   └──── Filtering(self, PointCloud outputCloud)
   └──── filter(self)
   └──── set_InputCloud(self, PointCloud pc)
   └──── SetParameter(self, PointCloud points, Vertices vt)
├──── pcl.Segmentation_PointXYZRGB_Normal
   └──── set_method_type(self, int m)
   └──── get_eps_angle(self)
   └──── get_min_max_opening_angle(self)
   └──── set_distance_threshold(self, float d)
   └──── set_axis(self, double ax1, double ax2, double ax3)
   └──── set_radius_limits(self, float f1, float f2)
   └──── get_axis(self)
   └──── set_max_iterations(self, int i)
   └──── set_min_max_opening_angle(self, double min_angle, double max_angle)

        Set the minimum and maximum cone opening angles in radians for a cone model
   └──── set_eps_angle(self, double ea)
   └──── set_normal_distance_weight(self, float f)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.PassThroughFilter_PointXYZI
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new PointCloud_PointXYZI
       
   └──── set_filter_limits(self, float filter_min, float filter_max)
   └──── set_filter_field_name(self, field_name)
├──── pcl.ApproximateVoxelGrid
   └──── set_leaf_size(self, float x, float y, float z)

        Set the voxel grid leaf size
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new pointcloud
       
   └──── set_InputCloud(self, PointCloud pc)
├──── pcl.OctreePointCloudSearch_PointXYZRGB
   └──── define_bounding_box(self)

        Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
   └──── add_points_from_input_cloud(self)

        Add points from input point cloud to octree
   └──── is_voxel_occupied_at_point(self, point)

        Check if voxel at given point coordinates exist
   └──── delete_voxel_at_point(self, point)

        Delete leaf node / voxel at given point
   └──── get_occupied_voxel_centers(self)

        Get list of centers of all occupied voxels
   └──── radius_search(self, point, double radius, unsigned int max_nn=0)

        Search for all neighbors of query point that are within a given radius
├──── pcl.PointCloud
   └──── make_octreeChangeDetector(self, double resolution)

        Return a pcl
   └──── from_list(self, _list)

        Fill this pointcloud from a list of 3-tuples
       
   └──── make_kdtree(self)

        Return a pcl
   └──── __reduce__(self)
   └──── make_ConcaveHull(self)

        Return a pcl
   └──── from_array(self, ndarray arr)

        Fill this object from a 2D numpy array (float32)
       
   └──── _to_ply_file(self, const char *f, bool binary=False)
   └──── make_RangeImage(self)
   └──── to_array(self)

        Return this object as a 2D numpy array (float32)
       
   └──── make_ConditionalRemoval(self, ConditionAnd range_conf)

        Return a pcl
   └──── extract(self, pyindices, bool negative=False)

        Given a list of indices of points in the pointcloud, return a
        new pointcloud containing only those points
   └──── make_GeneralizedIterativeClosestPoint(self)
   └──── make_octreeSearch(self, double resolution)

        Return a pcl
   └──── make_octree(self, double resolution)

        Return a pcl
   └──── make_ProjectInliers(self)

        Return a pclfil
   └──── make_NormalEstimation(self)
   └──── make_RegionGrowing(self, int ksearch=-1, double searchRadius=-1
   └──── make_IterativeClosestPointNonLinear(self)
   └──── make_voxel_grid_filter(self)

        Return a pcl
   └──── make_segmenter(self)

        Return a pcl
   └──── _from_obj_file(self, const char *s)
   └──── to_file(self, const char *fname, bool ascii=True)
Save pointcloud to a file in PCD format
   └──── make_ApproximateVoxelGrid(self)

        Return a pcl
   └──── make_VFHEstimation(self)
   └──── make_EuclideanClusterExtraction(self)
   └──── make_ConditionAnd(self)

        Return a pcl
   └──── make_passthrough_filter(self)

        Return a pcl
   └──── _from_ply_file(self, const char *s)
   └──── make_kdtree_flann(self)

        Return a pcl
   └──── _from_pcd_file(self, const char *s)
   └──── make_RadiusOutlierRemoval(self)

        Return a pclfil
   └──── resize(self, npy_intp x)
   └──── make_statistical_outlier_filter(self)

        Return a pcl
   └──── from_file(self, char *f)

        Fill this pointcloud from a file (a local path)
   └──── _to_pcd_file(self, const char *f, bool binary=False)
   └──── make_cropbox(self)

        Return a pcl
   └──── make_MomentOfInertiaEstimation(self)
   └──── make_IterativeClosestPoint(self)
   └──── to_list(self)

        Return this object as a list of 3-tuples
       
   └──── get_point(self, npy_intp row, npy_intp col)

        Return a point (3-tuple) at the given row/column
       
   └──── make_HarrisKeypoint3D(self)

        Return a pcl
   └──── make_moving_least_squares(self)

        Return a pcl
   └──── make_IntegralImageNormalEstimation(self)

        Return a pcl
   └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
   └──── make_crophull(self)

        Return a pcl
├──── pcl.RangeImages
   └──── CreateFromPointCloud(self, PointCloud cloud, float angular_resolution, float max_angle_width, float max_angle_height, CoordinateFrame2 coordinate_frame, float noise_level, float min_range, int border_size)
   └──── SetUnseenToMaxRange(self)
   └──── SetAngularResolution(self, float angular_resolution_x, float angular_resolution_y)
   └──── IntegrateFarRanges(self, PointCloud_PointWithViewpoint viewpoint)
├──── pcl.IterativeClosestPoint
   └──── icp(self, PointCloud source, PointCloud target, max_iter=None)

        Align source to target using iterative closest point (ICP)
   └──── set_InputTarget(self, PointCloud cloud)
├──── pcl.Segmentation_PointXYZI_Normal
   └──── set_method_type(self, int m)
   └──── get_eps_angle(self)
   └──── get_min_max_opening_angle(self)
   └──── set_distance_threshold(self, float d)
   └──── set_axis(self, double ax1, double ax2, double ax3)
   └──── set_radius_limits(self, float f1, float f2)
   └──── get_axis(self)
   └──── set_max_iterations(self, int i)
   └──── set_min_max_opening_angle(self, double min_angle, double max_angle)

        Set the minimum and maximum cone opening angles in radians for a cone model
   └──── set_eps_angle(self, double ea)
   └──── set_normal_distance_weight(self, float f)
   └──── set_model_type(self, SacModel m)
   └──── segment(self)
   └──── set_optimize_coefficients(self, bool b)
├──── pcl.PassThroughFilter_PointXYZRGB
   └──── filter(self)

        Apply the filter according to the previously set parameters and return
        a new PointCloud_PointXYZRGB
       
   └──── set_filter_limits(self, float filter_min, float filter_max)
   └──── set_filter_field_name(self, field_name)

一些常量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
('SACMODEL_LINE', 1)
('SACMODEL_PARALLEL_PLANE', 15)
('SACMODEL_CYLINDER', 5)
('SAC_PROSAC', 6)
('SAC_LMEDS', 1)
('SACMODEL_PARALLEL_LINES', 10)
('SAC_MSAC', 2)
('SACMODEL_REGISTRATION', 13)
('SAC_RRANSAC', 3)
('SACMODEL_NORMAL_PARALLEL_PLANE', 16)
('SACMODEL_NORMAL_SPHERE', 12)
('SACMODEL_CIRCLE2D', 2)
('SACMODEL_TORUS', 7)
('SACMODEL_STICK', 17)
('SACMODEL_CIRCLE3D', 3)
('SAC_RMSAC', 4)
('SACMODEL_NORMAL_PLANE', 11)
('SACMODEL_PERPENDICULAR_PLANE', 9)
('SAC_RANSAC', 0)
('SACMODEL_CONE', 6)
('SAC_MLESAC', 5)
('SACMODEL_SPHERE', 4)
('SACMODEL_PARALLEL_LINE', 8)
('SACMODEL_PLANE', 0)

('PCLVISUALIZER_OPACITY', 1)
('PCLVISUALIZER_REPRESENTATION', 5)
('PCLVISUALIZER_FONT_SIZE', 3)
('PCLVISUALIZER_POINT_SIZE', 0)
('PCLVISUALIZER_REPRESENTATION_WIREFRAME', 1)
('PCLVISUALIZER_IMMEDIATE_RENDERING', 6)
('PCLVISUALIZER_REPRESENTATION_POINTS', 0)
('PCLVISUALIZER_REPRESENTATION_SURFACE', 2)
('PCLVISUALIZER_LINE_WIDTH', 2)
('PCLVISUALIZER_COLOR', 4)