1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | import os import lmdb # install lmdb by "pip install lmdb" import cv2 import re from PIL import Image import numpy as np import imghdr def checkImageIsValid(imageBin): if imageBin is None: return False try: imageBuf = np.fromstring(imageBin, dtype=np.uint8) img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE) imgH, imgW = img.shape[0], img.shape[1] except: return False else: if imgH * imgW == 0: return False return True def writeCache(env, cache): with env.begin(write=True) as txn: for k, v in cache.items(): if type(k) == str: k = k.encode() if type(v) == str: v = v.encode() txn.put(k, v) def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True): assert(len(imagePathList) == len(labelList)) nSamples = len(imagePathList) env = lmdb.open(outputPath, map_size=10995116277760) cache = {} cnt = 1 for i in range(nSamples): imagePath = ''.join(imagePathList[i]).split()[0].replace('\n','').replace('\r\n','') label = ''.join(labelList[i]) print(label) with open(imagePath, 'rb') as f: imageBin = f.read() if checkValid: if not checkImageIsValid(imageBin): print('%s is not a valid image' % imagePath) continue imageKey = 'image-%09d' % cnt labelKey = 'label-%09d' % cnt cache[imageKey] = imageBin cache[labelKey] = label if lexiconList: lexiconKey = 'lexicon-%09d' % cnt cache[lexiconKey] = ' '.join(lexiconList[i]) if cnt % 1000 == 0: writeCache(env, cache) cache = {} print('Written %d / %d' % (cnt, nSamples)) cnt += 1 print(cnt) nSamples = cnt-1 cache['num-samples'] = str(nSamples) writeCache(env, cache) print('Created dataset with %d samples' % nSamples) if __name__ == '__main__': outputPath = "./lmdb_train" imgdata = open("./train.txt") imagePathList = list(imgdata) labelList = [] for line in imagePathList: word = line.split()[1] labelList.append(word) createDataset(outputPath, imagePathList, labelList) |