PCL 计算PFH并可视化


算法原理

PFH和FPFH的算法原理

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include<iostream>
#include<vector>
#include <pcl/point_types.h>
#include <pcl/features/pfh.h>
#include <pcl/io/pcd_io.h>//点云文件pcd 读写
#include <pcl/features/normal_3d.h>//法线特征
#include <pcl/visualization/pcl_plotter.h>// 直方图的可视化 方法2

using namespace std;
int main(int argc, char** argv)
{

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr(new pcl::PointCloud<pcl::PointXYZ>);
    //======【1】 读取点云文件 填充点云对象======
    pcl::PCDReader reader;
    reader.read("mesh.pcd", *cloud_ptr);
    // =====【2】计算法线========创建法线估计类====================================
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
    ne.setInputCloud(cloud_ptr);
   
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
    ne.setSearchMethod(tree);//设置近邻搜索算法
    // 输出点云 带有法线描述
    pcl::PointCloud<pcl::Normal>::Ptr cloud_normals_ptr(new pcl::PointCloud<pcl::Normal>);
    pcl::PointCloud<pcl::Normal>& cloud_normals = *cloud_normals_ptr;
    // Use all neighbors in a sphere of radius 3cm
    ne.setRadiusSearch(0.03);//半价内搜索临近点 3cm
    // 计算表面法线特征
    ne.compute(cloud_normals);

    //=======【3】创建PFH估计对象pfh,并将输入点云数据集cloud和法线normals传递给它=================
    pcl::PFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::PFHSignature125> pfh;// phf特征估计其器
    pfh.setInputCloud(cloud_ptr);
    pfh.setInputNormals(cloud_normals_ptr);
    //如果点云是类型为PointNormal,则执行pfh.setInputNormals (cloud);
    //创建一个空的kd树表示法,并把它传递给PFH估计对象。
    //基于已给的输入数据集,建立kdtree
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree2(new pcl::search::KdTree<pcl::PointXYZ>());
    //pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr tree2 (new pcl::KdTreeFLANN<pcl::PointXYZ> ()); //-- older call for PCL 1.5-
    pfh.setSearchMethod(tree2);//设置近邻搜索算法
    //输出数据集
    pcl::PointCloud<pcl::PFHSignature125>::Ptr pfh_fe_ptr(new pcl::PointCloud<pcl::PFHSignature125>());//phf特征
    //使用半径在5厘米范围内的所有邻元素。
    //注意:此处使用的半径必须要大于估计表面法线时使用的半径!!!
    pfh.setRadiusSearch(0.05);
    //计算pfh特征值
    pfh.compute(*pfh_fe_ptr);
    cout << "phf feature size : " << pfh_fe_ptr->points.size() << endl;
    // 应该与input cloud->points.size ()有相同的大小,即每个点都有一个pfh特征向量

    // ========直方图可视化=============================
      pcl::visualization::PCLPlotter plotter;
      plotter.addFeatureHistogram(*pfh_fe_ptr, 300); //设置的很坐标长度,该值越大,则显示的越细致
      plotter.plot();

    return 0;
}

实验结果

在这里插入图片描述