carsim与matlab联合仿真遇到的问题汇总(龚建伟的书)(1)

一、相关资源

【1】龚建伟书彩色版教程
感谢博主提供了彩色版教程,可以辅助书中的设置,彩色看起来更舒服
在这里插入图片描述

【2】CarSim&Simulink 联合仿真案例 知乎相关小问题汇总如下图是实际内容
在这里插入图片描述

二、实际遇到的问题(关于龚建伟书网络资源代码的错误)

1、运动学模型仿真

新版matlab不提供有效集法,需要改写为内点法。

具体报错是:The ‘active-set’ algorithm has been removed from quadprog. To avoid this error, choose a different algorithm: ‘interior-point-convex’ or ‘trust-region-reflective’.
在这里插入图片描述
应该进行如下图位置更改
在这里插入图片描述
这里的options需要更改到第二项,也可以找到matlab2011a版的quadprog函数对新版进行替换。这里给出旧版2011a的代码供替换使用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
function [X,fval,exitflag,output,lambda] = quadprog(H,f,A,B,Aeq,Beq,lb,ub,X0,options,varargin)
%QUADPROG Quadratic programming.
%   X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming
%   problem:
%
%            min 0.5*x'*H*x + f'*x   subject to:  A*x <= b
%             x    
%
%   X = QUADPROG(H,f,A,b,Aeq,beq) solves the problem above while
%   additionally satisfying the equality constraints Aeq*x = beq.
%
%   X = QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that the solution is in the
%   range LB <= X <= UB. Use empty matrices for LB and UB if no bounds
%   exist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if
%   X(i) is unbounded above.
%
%   X = QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0.
%
%   X = QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0,OPTIONS) minimizes with the
%   default optimization parameters replaced by values in the structure
%   OPTIONS, an argument created with the OPTIMSET function. See OPTIMSET
%   for details. Used options are Display, Diagnostics, TolX, TolFun,
%   HessMult, LargeScale, MaxIter, PrecondBandWidth, TypicalX, TolPCG, and
%   MaxPCGIter. Currently, only 'final' and 'off' are valid values for the
%   parameter Display ('iter' is not available).
%
%   X = QUADPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with matrix 'H' in PROBLEM.H, the vector 'f' in PROBLEM.f,
%   the linear inequality constraints in PROBLEM.Aineq and PROBLEM.bineq,
%   the linear equality constraints in PROBLEM.Aeq and PROBLEM.beq, the
%   lower bounds in PROBLEM.lb, the upper bounds in PROBLEM.ub, the start
%   point in PROBLEM.x0, the options structure in PROBLEM.options, and
%   solver name 'quadprog' in PROBLEM.solver. Use this syntax to solve at
%   the command line a problem exported from OPTIMTOOL. The structure
%   PROBLEM must have all the fields.
%
%   [X,FVAL] = QUADPROG(H,f,A,b) returns the value of the objective
%   function at X: FVAL = 0.5*X'*H*X + f'*X.
%
%   [X,FVAL,EXITFLAG] = QUADPROG(H,f,A,b) returns an EXITFLAG that
%   describes the exit condition of QUADPROG. Possible values of EXITFLAG
%   and the corresponding exit conditions are
%
%   All algorithms:
%     1  First order optimality conditions satisfied.
%     0  Maximum number of iterations exceeded.
%    -2  No feasible point found.
%    -3  Problem is unbounded.
%   Interior-point-convex only:
%    -6  Non-convex problem detected.
%   Trust-region-reflective only:
%     3  Change in objective function too small.
%    -4  Current search direction is not a descent direction; no further
%         progress can be made.
%   Active-set only:
%     4  Local minimizer found.
%    -7  Magnitude of search direction became too small; no further
%         progress can be made. The problem is ill-posed or badly
%         conditioned.
%
%   [X,FVAL,EXITFLAG,OUTPUT] = QUADPROG(H,f,A,b) returns a structure
%   OUTPUT with the number of iterations taken in OUTPUT.iterations,
%   maximum of constraint violations in OUTPUT.constrviolation, the
%   type of algorithm used in OUTPUT.algorithm, the number of conjugate
%   gradient iterations (if used) in OUTPUT.cgiterations, a measure of
%   first order optimality (large-scale algorithm only) in
%   OUTPUT.firstorderopt, and the exit message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = QUADPROG(H,f,A,b) returns the set of
%   Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the
%   linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq,
%   LAMBDA.lower for LB, and LAMBDA.upper for UB.
%
%   See also LINPROG, LSQLIN.

%   Copyright 1990-2010 The MathWorks, Inc.
%   $Revision: 1.1.6.14 $  $Date: 2010/11/01 19:41:32 $

defaultopt = struct( ...
    'Algorithm','trust-region-reflective', ...
    'Diagnostics','off', ...
    'Display','final', ...
    'HessMult',[], ...
    'LargeScale','on', ...
    'MaxIter',[], ...    
    'MaxPCGIter','max(1,floor(numberOfVariables/2))', ...  
    'PrecondBandWidth',0, ...
    'TolCon',1e-8, ...
    'TolFun',[], ...
    'TolPCG',0.1, ...    
    'TolX',100*eps, ...
    'TypicalX','ones(numberOfVariables,1)' ...    
    );

% If just 'defaults' passed in, return the default options in X
if nargin == 1 && nargout <= 1 && isequal(H,'defaults')
   X = defaultopt;
   return
end

if nargin < 10
    options = [];
    if nargin < 9
        X0 = [];
        if nargin < 8
            ub = [];
            if nargin < 7
                lb = [];
                if nargin < 6
                    Beq = [];
                    if nargin < 5
                        Aeq = [];
                        if nargin < 4
                            B = [];
                            if nargin < 3
                                A = [];
                            end
                        end
                    end
                end
            end
        end
    end
end

% Detect problem structure input
if nargin == 1
   if isa(H,'struct')
       [H,f,A,B,Aeq,Beq,lb,ub,X0,options] = separateOptimStruct(H);
   else % Single input and non-structure.
        error(message('optim:quadprog:InputArg'));
   end
end

if nargin == 0
   error(message('optim:quadprog:NotEnoughInputs'))
end

% Check for non-double inputs
% SUPERIORFLOAT errors when superior input is neither single nor double;
% We use try-catch to override SUPERIORFLOAT's error message when input
% data type is integer.
try
    dataType = superiorfloat(H,f,A,B,Aeq,Beq,lb,ub,X0);
catch ME
    if strcmp(ME.identifier,'MATLAB:datatypes:superiorfloat')
        dataType = 'notDouble';
    end
end

if ~strcmp(dataType,'double')
    error(message('optim:quadprog:NonDoubleInput'))
end
                     
% Set up constant strings
activeSet =  'active-set';
trustRegReflect = 'trust-region-reflective';
interiorPointConvex = 'interior-point-convex';

if nargout > 4
   computeLambda = true;
else
   computeLambda = false;
end
if nargout > 3
   computeConstrViolation = true;
   computeFirstOrderOpt = true;
else
   computeConstrViolation = false;
   computeFirstOrderOpt = false;
end

% Options setup
largescale = isequal(optimget(options,'LargeScale',defaultopt,'fast'),'on');
Algorithm = optimget(options,'Algorithm',defaultopt,'fast');

diagnostics = isequal(optimget(options,'Diagnostics',defaultopt,'fast'),'on');
display = optimget(options,'Display',defaultopt,'fast');
detailedExitMsg = ~isempty(strfind(display,'detailed'));
switch display
case {'off', 'none'}
   verbosity = 0;
case {'iter','iter-detailed'}
   verbosity = 2;
case {'final','final-detailed'}
   verbosity = 1;
case 'testing'
   verbosity = 3;
otherwise
   verbosity = 1;
end


% Determine algorithm user chose via options. (We need this now to set
% OUTPUT.algorithm in case of early termination due to inconsistent
% bounds.) This algorithm choice may be modified later when we check the
% problem type.
algChoiceOptsConflict = false;
if strcmpi(Algorithm,'active-set')
    output.algorithm = activeSet;
elseif strcmpi(Algorithm,'interior-point-convex')
    output.algorithm = interiorPointConvex;
elseif strcmpi(Algorithm,'trust-region-reflective')
    if largescale
        output.algorithm = trustRegReflect;
    else
        % Conflicting options Algorithm='trust-region-reflective' and
        % LargeScale='off'. Choose active-set algorithm.
        algChoiceOptsConflict = true; % Warn later, not in case of early termination
        output.algorithm = activeSet;
    end
else
    error(message('optim:quadprog:InvalidAlgorithm'));
end

mtxmpy = optimget(options,'HessMult',defaultopt,'fast');
% Check for name clash
functionNameClashCheck('HessMult',mtxmpy,'hessMult_optimInternal','optim:quadprog:HessMultNameClash');
if isempty(mtxmpy)
    % Internal Hessian-multiply function
    mtxmpy = @hessMult_optimInternal;
    usrSuppliedHessMult = false;    
else
    usrSuppliedHessMult = true;
end

% Set the constraints up: defaults and check size
[nineqcstr,numberOfVariablesineq] = size(A);
[neqcstr,numberOfVariableseq] = size(Aeq);
if isa(H,'double') && ~usrSuppliedHessMult
   % H must be square and have the correct size
   nColsH = size(H,2);
   if nColsH ~= size(H,1)
      error(message('optim:quadprog:NonSquareHessian'));
   end
else % HessMult in effect, so H can be anything
   nColsH = 0;
end

% Check the number of variables. The check must account for any combination of these cases:
% * User provides HessMult
% * The problem is linear (H = zeros, or H = [])
% * The objective has no linear component (f = [])
% * There are no linear constraints (A,Aeq = [])
% * There are no, or partially specified, bounds
% * There is no X0
numberOfVariables = ...
    max([length(f),nColsH,numberOfVariablesineq,numberOfVariableseq]);

if numberOfVariables == 0
    % If none of the problem quantities indicate the number of variables,
    % check X0, even though some algorithms do not use it.
    if isempty(X0)
        error(message('optim:quadprog:EmptyProblem'));
    else
        % With all other data empty, use the X0 input to determine
        % the number of variables.
        numberOfVariables = length(X0);
    end
end

ncstr = nineqcstr + neqcstr;

if isempty(f)
    f = zeros(numberOfVariables,1);
else
    % Make sure that the number of rows/columns in H matches the length of
    % f under the following conditions:
    % * The Hessian is passed in explicitly (no HessMult)
    % * There is a non-empty Hessian
    if ~usrSuppliedHessMult && ~isempty(H)
        if length(f) ~= nColsH
            error(message('optim:quadprog:MismatchObjCoefSize'));
        end
    end
end
if isempty(A)
    A = zeros(0,numberOfVariables);
end
if isempty(B)
    B = zeros(0,1);
end
if isempty(Aeq)
    Aeq = zeros(0,numberOfVariables);
end
if isempty(Beq)
    Beq = zeros(0,1);
end

% Expect vectors
f = f(:);
B = B(:);
Beq = Beq(:);

if ~isequal(length(B),nineqcstr)
    error(message('optim:quadprog:InvalidSizesOfAAndB'))
elseif ~isequal(length(Beq),neqcstr)
    error(message('optim:quadprog:InvalidSizesOfAeqAndBeq'))
elseif ~isequal(length(f),numberOfVariablesineq) && ~isempty(A)
    error(message('optim:quadprog:InvalidSizesOfAAndF'))
elseif ~isequal(length(f),numberOfVariableseq) && ~isempty(Aeq)
    error(message('optim:quadprog:InvalidSizesOfAeqAndf'))
end

[X0,lb,ub,msg] = checkbounds(X0,lb,ub,numberOfVariables);
if ~isempty(msg)
   exitflag = -2;
   X=X0; fval = []; lambda = [];
   output.iterations = 0;
   output.constrviolation = [];
   output.algorithm = ''; % Not known at this stage
   output.firstorderopt = [];
   output.cgiterations = [];
   output.message = msg;
   if verbosity > 0
      disp(msg)
   end
   return
end

% Check that all data is real
if ~(isreal(H) && isreal(A) && isreal(Aeq) && isreal(f) && ...
     isreal(B) && isreal(Beq) && isreal(lb) && isreal(ub) && isreal(X0))
    error(message('optim:quadprog:ComplexData'))
end

caller = 'quadprog';
% Check out H and make sure it isn't empty or all zeros
if isa(H,'double') && ~usrSuppliedHessMult
   if norm(H,'inf')==0 || isempty(H)
      % Really a lp problem
      warning(message('optim:quadprog:NullHessian'))
      [X,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,X0,options);
      return
   else
      % Make sure it is symmetric
      if norm(H-H',inf) > eps
         if verbosity > -1
            warning(message('optim:quadprog:HessianNotSym'))
         end
         H = (H+H')*0.5;
      end
   end
end


% Determine which algorithm and make sure problem matches.
hasIneqs = (nineqcstr > 0);  % Does the problem have any inequalities?
hasEqsAndBnds = (neqcstr > 0) && (any(isfinite(ub)) || any(isfinite(lb))); % Does the problem have both equalities and bounds?
hasMoreEqsThanVars = (neqcstr > numberOfVariables); % Does the problem have more equalities than variables?
hasNoConstrs = (neqcstr == 0) && (nineqcstr == 0) && ...
    all(eq(ub, inf)) && all(eq(lb, -inf)); % Does the problem not have equalities, bounds, or inequalities?

if (hasIneqs || hasEqsAndBnds || hasMoreEqsThanVars || hasNoConstrs) && ...
        strcmpi(output.algorithm,trustRegReflect) || strcmpi(output.algorithm,activeSet)
   % (has linear inequalites OR both equalities and bounds OR has no constraints OR
   % has more equalities than variables) then call active-set code
   if algChoiceOptsConflict
       % Active-set algorithm chosen as a result of conflicting options
       warning('optim:quadprog:QPAlgLargeScaleConflict', ...
           ['Options LargeScale = ''off'' and Algorithm = ''trust-region-reflective'' conflict. ' ...
           'Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set ' ...
           'LargeScale = ''on''. To run active-set without this warning, set Algorithm = ''active-set''.']);
   end

   if strcmpi(output.algorithm,trustRegReflect)
     warning('optim:quadprog:SwitchToMedScale', ...
            ['Trust-region-reflective algorithm does not solve this type of problem, ' ...
            'using active-set algorithm. You could also try the interior-point-convex ' ...
            'algorithm: set the Algorithm option to ''interior-point-convex'' ', ...
            'and rerun. For more help, see %s in the documentation.'], ...
            addLink('Choosing the Algorithm','choose_algorithm'))
   end
   output.algorithm = activeSet;
   Algorithm = 'active-set';
   if issparse(H)  || issparse(A) || issparse(Aeq) % Passed in sparse matrices
       warning(message('optim:quadprog:ConvertingToFull'))
   end
   H = full(H); A = full(A); Aeq = full(Aeq);
else
    % Using trust-region-reflective or interior-point-convex algorithms
   if ~usrSuppliedHessMult
     H = sparse(H);
   end
   A = sparse(A); Aeq = sparse(Aeq);
end
if ~isa(H,'double') || usrSuppliedHessMult &&  ...
        ~strcmpi(output.algorithm,trustRegReflect)
    error(message('optim:quadprog:NoHessMult', Algorithm))
end

if diagnostics
   % Do diagnostics on information so far
   gradflag = []; hessflag = []; line_search=[];
   constflag = 0; gradconstflag = 0; non_eq=0;non_ineq=0;
   lin_eq=size(Aeq,1); lin_ineq=size(A,1); XOUT=ones(numberOfVariables,1);
   funfcn{1} = [];ff=[]; GRAD=[];HESS=[];
   confcn{1}=[];c=[];ceq=[];cGRAD=[];ceqGRAD=[];
   msg = diagnose('quadprog',output,gradflag,hessflag,constflag,gradconstflag,...
      line_search,options,defaultopt,XOUT,non_eq,...
      non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn,ff,GRAD,HESS,c,ceq,cGRAD,ceqGRAD);
end

% Trust-region-reflective
if strcmpi(output.algorithm,trustRegReflect)
    % Call sqpmin when just bounds or just equalities
    [X,fval,output,exitflag,lambda] = sqpmin(f,H,mtxmpy,X0,Aeq,Beq,lb,ub,verbosity, ...
        options,defaultopt,computeLambda,computeConstrViolation,varargin{:});

    if exitflag == -10  % Problem not handled by sqpmin at this time: dependent rows
        warning(message('optim:quadprog:SwitchToMedScale'))
        output.algorithm = activeSet;
        if ~isa(H,'double') || usrSuppliedHessMult
            error('optim:quadprog:NoHessMult', ...
                'H must be specified explicitly for active-set algorithm: cannot use HessMult option.')
        end
        H = full(H); A = full(A); Aeq = full(Aeq);
    end
end
% Call active-set algorithm
if strcmpi(output.algorithm,activeSet)
   if isempty(X0)
      X0 = zeros(numberOfVariables,1);
   end
   % Set default value of MaxIter for qpsub
   defaultopt.MaxIter = 200;
   % Create options structure for qpsub
   qpoptions.MaxIter = optimget(options,'MaxIter',defaultopt,'fast');
   % A fixed constraint tolerance (eps) is used for constraint
   % satisfaction; no need to specify any value
   qpoptions.TolCon = [];
   
   [X,lambdaqp,exitflag,output,~,~,msg]= ...
      qpsub(H,f,[Aeq;A],[Beq;B],lb,ub,X0,neqcstr,...
      verbosity,caller,ncstr,numberOfVariables,qpoptions);
   output.algorithm = activeSet; % have to reset since call to qpsub obliterates
   
end

if strcmpi(output.algorithm,interiorPointConvex)
    defaultopt.MaxIter = 200;
    defaultopt.TolFun = 1e-8;
    % If the output structure is requested, we must reconstruct the
    % Lagrange multipliers in the postsolve. Therefore, set computeLambda
    % to true if the output structure is requested.
    flags.computeLambda = computeFirstOrderOpt;
    flags.detailedExitMsg = detailedExitMsg;
    flags.verbosity = verbosity;
    [X,fval,exitflag,output,lambda] = ipqpcommon(H,f,A,B,Aeq,Beq,lb,ub,X0, ...
                                          flags,options,defaultopt,varargin{:});
   
    % Presolve may have removed variables and constraints from the problem.
    % Postsolve will re-insert the primal and dual solutions after the main
    % algorithm has run. Therefore, constraint violation and first-order
    % optimality must be re-computed.
    %  
    % If no initial point was provided by the user and the presolve has
    % declared the problem infeasible or unbounded, X will be empty. The
    % lambda structure will also be empty, so do not compute constraint
    % violation or first-order optimality if lambda is missing.
   
    % Compute constraint violation if the output structure is requested
    if computeFirstOrderOpt && ~isempty(lambda)
        output.constrviolation = norm([Aeq*X-Beq; max([A*X - B;X - ub;lb - X],0)],Inf);        
    end
end

% Compute fval and first-order optimality if the active-set algorithm was
% run, or if the interior-point-convex algorithm was run (not stopped in presolve)
if (strcmpi(output.algorithm,interiorPointConvex) && ~isempty(lambda)) || ...
    strcmpi(output.algorithm,activeSet)
    % Compute objective function value
    fval = 0.5*X'*(H*X)+f'*X;
   
   % Compute lambda and exit message for active-set algorithm
   if strcmpi(output.algorithm,activeSet)
       if computeLambda || computeFirstOrderOpt
           llb = length(lb);
           lub = length(ub);
           lambda.lower = zeros(llb,1);
           lambda.upper = zeros(lub,1);
           arglb = ~isinf(lb); lenarglb = nnz(arglb);
           argub = ~isinf(ub); lenargub = nnz(argub);
           lambda.eqlin = lambdaqp(1:neqcstr,1);
           lambda.ineqlin = lambdaqp(neqcstr+1:neqcstr+nineqcstr,1);
           lambda.lower(arglb) = lambdaqp(neqcstr+nineqcstr+1:neqcstr+nineqcstr+lenarglb);
           lambda.upper(argub) = lambdaqp(neqcstr+nineqcstr+lenarglb+1: ...
               neqcstr+nineqcstr+lenarglb+lenargub);
       end
       if exitflag == 1
           normalTerminationMsg = sprintf('Optimization terminated.');
           if verbosity > 0
               disp(normalTerminationMsg)
           end
           if isempty(msg)
               output.message = normalTerminationMsg;
           else
               % append normal termination msg to current output msg
               output.message = sprintf('%s\n%s',msg,normalTerminationMsg);
           end
       else
           output.message = msg;
       end
   end
   % Compute first order optimality if needed
   if computeFirstOrderOpt && ~isempty(lambda)
      output.firstorderopt = computeKKTErrorForQPLP(H,f,A,B,Aeq,Beq,lb,ub,lambda,X);
   else
      output.firstorderopt = [];
   end
   output.cgiterations = [];  
end

程序中给的约束条件注意是否有错误

发现程序在第一次运算后也就是0.05s后终止,flag=3,报维数错误
在这里插入图片描述
大概率应该是约束条件问题,可以尝试将松弛因子扩大,或者将限制适当放宽,预测长度控制长度变小等尝试。
我遇到的代码有问题:

在这里插入图片描述
要检查上述位置是否和我写的一样,因为网上的代码大多是被人调试过的,会出现错误。

2、动力学模型仿真

新版matlab会出现怎么更改参数都不能运行的情况

在这里插入图片描述
解决方法就是将上文提到的 quadprog 函数内容替换成2011a版本的就可以了。

3、后面的问题持续更新