一、相关资源
【1】龚建伟书彩色版教程
感谢博主提供了彩色版教程,可以辅助书中的设置,彩色看起来更舒服
【2】CarSim&Simulink 联合仿真案例 知乎相关小问题汇总如下图是实际内容
二、实际遇到的问题(关于龚建伟书网络资源代码的错误)
1、运动学模型仿真
新版matlab不提供有效集法,需要改写为内点法。
具体报错是:The ‘active-set’ algorithm has been removed from quadprog. To avoid this error, choose a different algorithm: ‘interior-point-convex’ or ‘trust-region-reflective’.
应该进行如下图位置更改
这里的options需要更改到第二项,也可以找到matlab2011a版的quadprog函数对新版进行替换。这里给出旧版2011a的代码供替换使用:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | function [X,fval,exitflag,output,lambda] = quadprog(H,f,A,B,Aeq,Beq,lb,ub,X0,options,varargin) %QUADPROG Quadratic programming. % X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming % problem: % % min 0.5*x'*H*x + f'*x subject to: A*x <= b % x % % X = QUADPROG(H,f,A,b,Aeq,beq) solves the problem above while % additionally satisfying the equality constraints Aeq*x = beq. % % X = QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper % bounds on the design variables, X, so that the solution is in the % range LB <= X <= UB. Use empty matrices for LB and UB if no bounds % exist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if % X(i) is unbounded above. % % X = QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. % % X = QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0,OPTIONS) minimizes with the % default optimization parameters replaced by values in the structure % OPTIONS, an argument created with the OPTIMSET function. See OPTIMSET % for details. Used options are Display, Diagnostics, TolX, TolFun, % HessMult, LargeScale, MaxIter, PrecondBandWidth, TypicalX, TolPCG, and % MaxPCGIter. Currently, only 'final' and 'off' are valid values for the % parameter Display ('iter' is not available). % % X = QUADPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a % structure with matrix 'H' in PROBLEM.H, the vector 'f' in PROBLEM.f, % the linear inequality constraints in PROBLEM.Aineq and PROBLEM.bineq, % the linear equality constraints in PROBLEM.Aeq and PROBLEM.beq, the % lower bounds in PROBLEM.lb, the upper bounds in PROBLEM.ub, the start % point in PROBLEM.x0, the options structure in PROBLEM.options, and % solver name 'quadprog' in PROBLEM.solver. Use this syntax to solve at % the command line a problem exported from OPTIMTOOL. The structure % PROBLEM must have all the fields. % % [X,FVAL] = QUADPROG(H,f,A,b) returns the value of the objective % function at X: FVAL = 0.5*X'*H*X + f'*X. % % [X,FVAL,EXITFLAG] = QUADPROG(H,f,A,b) returns an EXITFLAG that % describes the exit condition of QUADPROG. Possible values of EXITFLAG % and the corresponding exit conditions are % % All algorithms: % 1 First order optimality conditions satisfied. % 0 Maximum number of iterations exceeded. % -2 No feasible point found. % -3 Problem is unbounded. % Interior-point-convex only: % -6 Non-convex problem detected. % Trust-region-reflective only: % 3 Change in objective function too small. % -4 Current search direction is not a descent direction; no further % progress can be made. % Active-set only: % 4 Local minimizer found. % -7 Magnitude of search direction became too small; no further % progress can be made. The problem is ill-posed or badly % conditioned. % % [X,FVAL,EXITFLAG,OUTPUT] = QUADPROG(H,f,A,b) returns a structure % OUTPUT with the number of iterations taken in OUTPUT.iterations, % maximum of constraint violations in OUTPUT.constrviolation, the % type of algorithm used in OUTPUT.algorithm, the number of conjugate % gradient iterations (if used) in OUTPUT.cgiterations, a measure of % first order optimality (large-scale algorithm only) in % OUTPUT.firstorderopt, and the exit message in OUTPUT.message. % % [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = QUADPROG(H,f,A,b) returns the set of % Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the % linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq, % LAMBDA.lower for LB, and LAMBDA.upper for UB. % % See also LINPROG, LSQLIN. % Copyright 1990-2010 The MathWorks, Inc. % $Revision: 1.1.6.14 $ $Date: 2010/11/01 19:41:32 $ defaultopt = struct( ... 'Algorithm','trust-region-reflective', ... 'Diagnostics','off', ... 'Display','final', ... 'HessMult',[], ... 'LargeScale','on', ... 'MaxIter',[], ... 'MaxPCGIter','max(1,floor(numberOfVariables/2))', ... 'PrecondBandWidth',0, ... 'TolCon',1e-8, ... 'TolFun',[], ... 'TolPCG',0.1, ... 'TolX',100*eps, ... 'TypicalX','ones(numberOfVariables,1)' ... ); % If just 'defaults' passed in, return the default options in X if nargin == 1 && nargout <= 1 && isequal(H,'defaults') X = defaultopt; return end if nargin < 10 options = []; if nargin < 9 X0 = []; if nargin < 8 ub = []; if nargin < 7 lb = []; if nargin < 6 Beq = []; if nargin < 5 Aeq = []; if nargin < 4 B = []; if nargin < 3 A = []; end end end end end end end end % Detect problem structure input if nargin == 1 if isa(H,'struct') [H,f,A,B,Aeq,Beq,lb,ub,X0,options] = separateOptimStruct(H); else % Single input and non-structure. error(message('optim:quadprog:InputArg')); end end if nargin == 0 error(message('optim:quadprog:NotEnoughInputs')) end % Check for non-double inputs % SUPERIORFLOAT errors when superior input is neither single nor double; % We use try-catch to override SUPERIORFLOAT's error message when input % data type is integer. try dataType = superiorfloat(H,f,A,B,Aeq,Beq,lb,ub,X0); catch ME if strcmp(ME.identifier,'MATLAB:datatypes:superiorfloat') dataType = 'notDouble'; end end if ~strcmp(dataType,'double') error(message('optim:quadprog:NonDoubleInput')) end % Set up constant strings activeSet = 'active-set'; trustRegReflect = 'trust-region-reflective'; interiorPointConvex = 'interior-point-convex'; if nargout > 4 computeLambda = true; else computeLambda = false; end if nargout > 3 computeConstrViolation = true; computeFirstOrderOpt = true; else computeConstrViolation = false; computeFirstOrderOpt = false; end % Options setup largescale = isequal(optimget(options,'LargeScale',defaultopt,'fast'),'on'); Algorithm = optimget(options,'Algorithm',defaultopt,'fast'); diagnostics = isequal(optimget(options,'Diagnostics',defaultopt,'fast'),'on'); display = optimget(options,'Display',defaultopt,'fast'); detailedExitMsg = ~isempty(strfind(display,'detailed')); switch display case {'off', 'none'} verbosity = 0; case {'iter','iter-detailed'} verbosity = 2; case {'final','final-detailed'} verbosity = 1; case 'testing' verbosity = 3; otherwise verbosity = 1; end % Determine algorithm user chose via options. (We need this now to set % OUTPUT.algorithm in case of early termination due to inconsistent % bounds.) This algorithm choice may be modified later when we check the % problem type. algChoiceOptsConflict = false; if strcmpi(Algorithm,'active-set') output.algorithm = activeSet; elseif strcmpi(Algorithm,'interior-point-convex') output.algorithm = interiorPointConvex; elseif strcmpi(Algorithm,'trust-region-reflective') if largescale output.algorithm = trustRegReflect; else % Conflicting options Algorithm='trust-region-reflective' and % LargeScale='off'. Choose active-set algorithm. algChoiceOptsConflict = true; % Warn later, not in case of early termination output.algorithm = activeSet; end else error(message('optim:quadprog:InvalidAlgorithm')); end mtxmpy = optimget(options,'HessMult',defaultopt,'fast'); % Check for name clash functionNameClashCheck('HessMult',mtxmpy,'hessMult_optimInternal','optim:quadprog:HessMultNameClash'); if isempty(mtxmpy) % Internal Hessian-multiply function mtxmpy = @hessMult_optimInternal; usrSuppliedHessMult = false; else usrSuppliedHessMult = true; end % Set the constraints up: defaults and check size [nineqcstr,numberOfVariablesineq] = size(A); [neqcstr,numberOfVariableseq] = size(Aeq); if isa(H,'double') && ~usrSuppliedHessMult % H must be square and have the correct size nColsH = size(H,2); if nColsH ~= size(H,1) error(message('optim:quadprog:NonSquareHessian')); end else % HessMult in effect, so H can be anything nColsH = 0; end % Check the number of variables. The check must account for any combination of these cases: % * User provides HessMult % * The problem is linear (H = zeros, or H = []) % * The objective has no linear component (f = []) % * There are no linear constraints (A,Aeq = []) % * There are no, or partially specified, bounds % * There is no X0 numberOfVariables = ... max([length(f),nColsH,numberOfVariablesineq,numberOfVariableseq]); if numberOfVariables == 0 % If none of the problem quantities indicate the number of variables, % check X0, even though some algorithms do not use it. if isempty(X0) error(message('optim:quadprog:EmptyProblem')); else % With all other data empty, use the X0 input to determine % the number of variables. numberOfVariables = length(X0); end end ncstr = nineqcstr + neqcstr; if isempty(f) f = zeros(numberOfVariables,1); else % Make sure that the number of rows/columns in H matches the length of % f under the following conditions: % * The Hessian is passed in explicitly (no HessMult) % * There is a non-empty Hessian if ~usrSuppliedHessMult && ~isempty(H) if length(f) ~= nColsH error(message('optim:quadprog:MismatchObjCoefSize')); end end end if isempty(A) A = zeros(0,numberOfVariables); end if isempty(B) B = zeros(0,1); end if isempty(Aeq) Aeq = zeros(0,numberOfVariables); end if isempty(Beq) Beq = zeros(0,1); end % Expect vectors f = f(:); B = B(:); Beq = Beq(:); if ~isequal(length(B),nineqcstr) error(message('optim:quadprog:InvalidSizesOfAAndB')) elseif ~isequal(length(Beq),neqcstr) error(message('optim:quadprog:InvalidSizesOfAeqAndBeq')) elseif ~isequal(length(f),numberOfVariablesineq) && ~isempty(A) error(message('optim:quadprog:InvalidSizesOfAAndF')) elseif ~isequal(length(f),numberOfVariableseq) && ~isempty(Aeq) error(message('optim:quadprog:InvalidSizesOfAeqAndf')) end [X0,lb,ub,msg] = checkbounds(X0,lb,ub,numberOfVariables); if ~isempty(msg) exitflag = -2; X=X0; fval = []; lambda = []; output.iterations = 0; output.constrviolation = []; output.algorithm = ''; % Not known at this stage output.firstorderopt = []; output.cgiterations = []; output.message = msg; if verbosity > 0 disp(msg) end return end % Check that all data is real if ~(isreal(H) && isreal(A) && isreal(Aeq) && isreal(f) && ... isreal(B) && isreal(Beq) && isreal(lb) && isreal(ub) && isreal(X0)) error(message('optim:quadprog:ComplexData')) end caller = 'quadprog'; % Check out H and make sure it isn't empty or all zeros if isa(H,'double') && ~usrSuppliedHessMult if norm(H,'inf')==0 || isempty(H) % Really a lp problem warning(message('optim:quadprog:NullHessian')) [X,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,X0,options); return else % Make sure it is symmetric if norm(H-H',inf) > eps if verbosity > -1 warning(message('optim:quadprog:HessianNotSym')) end H = (H+H')*0.5; end end end % Determine which algorithm and make sure problem matches. hasIneqs = (nineqcstr > 0); % Does the problem have any inequalities? hasEqsAndBnds = (neqcstr > 0) && (any(isfinite(ub)) || any(isfinite(lb))); % Does the problem have both equalities and bounds? hasMoreEqsThanVars = (neqcstr > numberOfVariables); % Does the problem have more equalities than variables? hasNoConstrs = (neqcstr == 0) && (nineqcstr == 0) && ... all(eq(ub, inf)) && all(eq(lb, -inf)); % Does the problem not have equalities, bounds, or inequalities? if (hasIneqs || hasEqsAndBnds || hasMoreEqsThanVars || hasNoConstrs) && ... strcmpi(output.algorithm,trustRegReflect) || strcmpi(output.algorithm,activeSet) % (has linear inequalites OR both equalities and bounds OR has no constraints OR % has more equalities than variables) then call active-set code if algChoiceOptsConflict % Active-set algorithm chosen as a result of conflicting options warning('optim:quadprog:QPAlgLargeScaleConflict', ... ['Options LargeScale = ''off'' and Algorithm = ''trust-region-reflective'' conflict. ' ... 'Ignoring Algorithm and running active-set algorithm. To run trust-region-reflective, set ' ... 'LargeScale = ''on''. To run active-set without this warning, set Algorithm = ''active-set''.']); end if strcmpi(output.algorithm,trustRegReflect) warning('optim:quadprog:SwitchToMedScale', ... ['Trust-region-reflective algorithm does not solve this type of problem, ' ... 'using active-set algorithm. You could also try the interior-point-convex ' ... 'algorithm: set the Algorithm option to ''interior-point-convex'' ', ... 'and rerun. For more help, see %s in the documentation.'], ... addLink('Choosing the Algorithm','choose_algorithm')) end output.algorithm = activeSet; Algorithm = 'active-set'; if issparse(H) || issparse(A) || issparse(Aeq) % Passed in sparse matrices warning(message('optim:quadprog:ConvertingToFull')) end H = full(H); A = full(A); Aeq = full(Aeq); else % Using trust-region-reflective or interior-point-convex algorithms if ~usrSuppliedHessMult H = sparse(H); end A = sparse(A); Aeq = sparse(Aeq); end if ~isa(H,'double') || usrSuppliedHessMult && ... ~strcmpi(output.algorithm,trustRegReflect) error(message('optim:quadprog:NoHessMult', Algorithm)) end if diagnostics % Do diagnostics on information so far gradflag = []; hessflag = []; line_search=[]; constflag = 0; gradconstflag = 0; non_eq=0;non_ineq=0; lin_eq=size(Aeq,1); lin_ineq=size(A,1); XOUT=ones(numberOfVariables,1); funfcn{1} = [];ff=[]; GRAD=[];HESS=[]; confcn{1}=[];c=[];ceq=[];cGRAD=[];ceqGRAD=[]; msg = diagnose('quadprog',output,gradflag,hessflag,constflag,gradconstflag,... line_search,options,defaultopt,XOUT,non_eq,... non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn,ff,GRAD,HESS,c,ceq,cGRAD,ceqGRAD); end % Trust-region-reflective if strcmpi(output.algorithm,trustRegReflect) % Call sqpmin when just bounds or just equalities [X,fval,output,exitflag,lambda] = sqpmin(f,H,mtxmpy,X0,Aeq,Beq,lb,ub,verbosity, ... options,defaultopt,computeLambda,computeConstrViolation,varargin{:}); if exitflag == -10 % Problem not handled by sqpmin at this time: dependent rows warning(message('optim:quadprog:SwitchToMedScale')) output.algorithm = activeSet; if ~isa(H,'double') || usrSuppliedHessMult error('optim:quadprog:NoHessMult', ... 'H must be specified explicitly for active-set algorithm: cannot use HessMult option.') end H = full(H); A = full(A); Aeq = full(Aeq); end end % Call active-set algorithm if strcmpi(output.algorithm,activeSet) if isempty(X0) X0 = zeros(numberOfVariables,1); end % Set default value of MaxIter for qpsub defaultopt.MaxIter = 200; % Create options structure for qpsub qpoptions.MaxIter = optimget(options,'MaxIter',defaultopt,'fast'); % A fixed constraint tolerance (eps) is used for constraint % satisfaction; no need to specify any value qpoptions.TolCon = []; [X,lambdaqp,exitflag,output,~,~,msg]= ... qpsub(H,f,[Aeq;A],[Beq;B],lb,ub,X0,neqcstr,... verbosity,caller,ncstr,numberOfVariables,qpoptions); output.algorithm = activeSet; % have to reset since call to qpsub obliterates end if strcmpi(output.algorithm,interiorPointConvex) defaultopt.MaxIter = 200; defaultopt.TolFun = 1e-8; % If the output structure is requested, we must reconstruct the % Lagrange multipliers in the postsolve. Therefore, set computeLambda % to true if the output structure is requested. flags.computeLambda = computeFirstOrderOpt; flags.detailedExitMsg = detailedExitMsg; flags.verbosity = verbosity; [X,fval,exitflag,output,lambda] = ipqpcommon(H,f,A,B,Aeq,Beq,lb,ub,X0, ... flags,options,defaultopt,varargin{:}); % Presolve may have removed variables and constraints from the problem. % Postsolve will re-insert the primal and dual solutions after the main % algorithm has run. Therefore, constraint violation and first-order % optimality must be re-computed. % % If no initial point was provided by the user and the presolve has % declared the problem infeasible or unbounded, X will be empty. The % lambda structure will also be empty, so do not compute constraint % violation or first-order optimality if lambda is missing. % Compute constraint violation if the output structure is requested if computeFirstOrderOpt && ~isempty(lambda) output.constrviolation = norm([Aeq*X-Beq; max([A*X - B;X - ub;lb - X],0)],Inf); end end % Compute fval and first-order optimality if the active-set algorithm was % run, or if the interior-point-convex algorithm was run (not stopped in presolve) if (strcmpi(output.algorithm,interiorPointConvex) && ~isempty(lambda)) || ... strcmpi(output.algorithm,activeSet) % Compute objective function value fval = 0.5*X'*(H*X)+f'*X; % Compute lambda and exit message for active-set algorithm if strcmpi(output.algorithm,activeSet) if computeLambda || computeFirstOrderOpt llb = length(lb); lub = length(ub); lambda.lower = zeros(llb,1); lambda.upper = zeros(lub,1); arglb = ~isinf(lb); lenarglb = nnz(arglb); argub = ~isinf(ub); lenargub = nnz(argub); lambda.eqlin = lambdaqp(1:neqcstr,1); lambda.ineqlin = lambdaqp(neqcstr+1:neqcstr+nineqcstr,1); lambda.lower(arglb) = lambdaqp(neqcstr+nineqcstr+1:neqcstr+nineqcstr+lenarglb); lambda.upper(argub) = lambdaqp(neqcstr+nineqcstr+lenarglb+1: ... neqcstr+nineqcstr+lenarglb+lenargub); end if exitflag == 1 normalTerminationMsg = sprintf('Optimization terminated.'); if verbosity > 0 disp(normalTerminationMsg) end if isempty(msg) output.message = normalTerminationMsg; else % append normal termination msg to current output msg output.message = sprintf('%s\n%s',msg,normalTerminationMsg); end else output.message = msg; end end % Compute first order optimality if needed if computeFirstOrderOpt && ~isempty(lambda) output.firstorderopt = computeKKTErrorForQPLP(H,f,A,B,Aeq,Beq,lb,ub,lambda,X); else output.firstorderopt = []; end output.cgiterations = []; end |
程序中给的约束条件注意是否有错误
发现程序在第一次运算后也就是0.05s后终止,flag=3,报维数错误
大概率应该是约束条件问题,可以尝试将松弛因子扩大,或者将限制适当放宽,预测长度控制长度变小等尝试。
我遇到的代码有问题:
要检查上述位置是否和我写的一样,因为网上的代码大多是被人调试过的,会出现错误。
2、动力学模型仿真
新版matlab会出现怎么更改参数都不能运行的情况
解决方法就是将上文提到的 quadprog 函数内容替换成2011a版本的就可以了。