关于回归:R smooth.spline():平滑样条曲线不平滑,但过度拟合了我的数据

R smooth.spline(): smoothing spline is not smooth but overfitting my data

我有几个数据点似乎适合通过它们拟合样条曲线。当我这样做时,我得到了一个相当坎bump的拟合,例如过度拟合,这不是我所理解的平滑。

fit

是否有一个特殊的选项/参数来恢复像这样的非常平滑的样条曲线的功能。

smooth.splinepenalty参数的用法没有任何可见效果。也许我做错了吗?

以下是数据和代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
results <- structure(
    list(
        beta = c(
            0.983790622281964, 0.645152464354322,
            0.924104713597375, 0.657703886566088, 0.788138034115623, 0.801080207252363,
            1, 0.858337365965949, 0.999687052533693, 0.666552625121279, 0.717453633245958,
            0.621570152961453, 0.964658181346544, 0.65071758770312, 0.788971505000918,
            0.980476054183113, 0.670263506919246, 0.600387040967624, 0.759173403408052,
            1, 0.986409675965, 0.982996471134736, 1, 0.995340781899163, 0.999855895958986,
            1, 0.846179233381267, 0.879226324448832, 0.795820998892035, 0.997586607285667,
            0.848036806290156, 0.905320944437968, 0.947709125535428, 0.592172373022407,
            0.826847031044922, 0.996916006944244, 0.785967729206612, 0.650346929853076,
            0.84206351833549, 0.999043126652724, 0.936879214753098, 0.76674066557003,
            0.591431233516217, 1, 0.999833445117791, 0.999606223666537, 0.6224971799303,
            1, 0.974537160571494, 0.966717133936379
        ), inventoryCost = c(
            1750702.95138889,
            442784.114583333, 1114717.44791667, 472669.357638889, 716895.920138889,
            735396.180555556, 3837320.74652778, 872873.4375, 2872414.93055556,
            481095.138888889, 538125.520833333, 392199.045138889, 1469500.95486111,
            459873.784722222, 656220.486111111, 1654143.83680556, 437511.458333333,
            393295.659722222, 630952.170138889, 4920958.85416667, 1723517.10069444,
            1633579.86111111, 4639909.89583333, 2167748.35069444, 3062420.65972222,
            5132702.34375, 838441.145833333, 937659.288194444, 697767.1875,
            2523016.31944444, 800903.819444444, 1054991.49305556, 1266970.92013889,
            369537.673611111, 764995.399305556, 2322879.6875, 656021.701388889,
            458403.038194444, 844133.420138889, 2430700, 1232256.68402778,
            695574.479166667, 351348.524305556, 3827440.71180556, 3687610.41666667,
            2950652.51736111, 404550.78125, 4749901.64930556, 1510481.59722222,
            1422708.07291667
        )
    ), .Names = c("beta","inventoryCost"), class = c("data.frame")
)

plot(results$beta,results$inventoryCost)
mySpline <- smooth.spline(results$beta,results$inventoryCost, penalty=999999)
lines(mySpline$x, mySpline$y, col="red", lwd = 2)

在建模之前合理地转换数据

根据您的results$inventoryCost的比例,对数转换是合适的。为简单起见,以下我使用xy。我也正在重新排序您的数据,以便x升序:

1
2
3
4
5
6
x <- results$beta; y <- log(results$inventoryCost)
reorder <- order(x); x <- x[reorder]; y <- y[reorder]

par(mfrow = c(1,2))
plot(x, y, main ="take log transform")
hist(x, main ="x is skewed")

better

左图看起来更好吗?另外,强烈建议对x进行进一步转换,因为它偏斜! (请参见右图)。

以下转换是合适的:

1
x1 <- -(1-x)^(1/3)

(1-x)的立方根将使数据在x = 1周围更加分散。我添加了另一个-1,以便在xx1之间存在正单调关系,而不是负关系。现在让我们检查一下关系:

1
2
3
par(mfrow = c(1,2))
plot(x1, y, main = expression(y %~% ~ x1))
hist(x1, main ="x1 is well spread out")

much better

拟合样条线

现在,我们可以进行统计建模了。尝试以下呼叫:

1
2
3
4
5
fit <- smooth.spline(x1, y, nknots = 10)
pred <- stats:::predict.smooth.spline(fit, x1)$y  ## predict at all x1
## or you can simply call: pred <- predict(fit, x1)$y
plot(x1, y)  ## scatter plot
lines(x1, pred, lwd = 2, col = 2)  ## fitted spline

fit

看起来不错吗?注意,我已经使用nknots = 10告诉smooth.spline放置10个内部结(按分位数);因此,我们要拟合惩罚回归样条而不是平滑样条。实际上,除非放置all.knots = TRUE(请参阅后面的示例),否则smooth.spline()函数几乎永远不会适合平滑样条曲线。

我也放下了penalty = 999999,因为这与平滑度控制无关。如果您真的想控制平滑度,而不是让smooth.spline通过GCV找出最佳的平滑度,则应该使用参数dfspar。我将在后面给出示例。

要将拟合转换回原始比例,请执行以下操作:

1
2
plot(x, exp(y), main = expression(Inventory %~%~ beta))
lines(x, exp(pred), lwd = 2, col = 2)

如您所见,拟合的样条曲线与您期望的一样平滑。

good fit

拟合样条线的说明

让我们看一下拟合的样条线的摘要:

1
2
3
4
5
6
> fit

Smoothing Parameter  spar= 0.4549062  lambda= 0.0008657722 (11 iterations)
Equivalent Degrees of Freedom (Df): 6.022959
Penalized Criterion: 0.08517417
GCV: 0.004288539

我们使用了10个结,以6个自由度结束,因此惩罚可抑制约4个参数。经过11次迭代后,选择的平滑参数GCV为lambda= 0.0008657722

为什么我们必须将x转换为x1

样条曲线被二阶导数惩罚,但是这种惩罚是对所有数据点的平均/积分二阶导数进行的。现在,查看您的数据(x, y)。对于0.98之前的x,该关系相对稳定。当x接近1时,关系迅速变陡。"变化点"为0.98,具有很高的二阶导数,远高于其他位置的二阶导数。

1
2
3
4
5
y0 <- as.numeric(tapply(y, x, mean))  ## remove tied values
x0 <- unique(x)  ## remove tied values
dy0 <- diff(y0)/diff(x0)  ## 1st order difference
ddy0 <- diff(dy0)/diff(x0[-1])  ## 2nd order difference
plot(x0[1:43], abs(ddy0), pch = 19)

2nd derivative

看看二阶差分/导数的巨大峰值!现在,如果我们直接拟合样条曲线,则围绕此更改点的样条曲线将受到严重惩罚。

1
2
3
4
5
bad <- smooth.spline(x, y, all.knots = TRUE)
bad.pred <- predict(bad, x)$y
plot(x, exp(y), main = expression(Inventory %~% ~ beta))
lines(x, exp(bad.pred), col = 2, lwd = 3)
abline(v = 0.98, lwd = 2, lty = 2)

bad fit

您可以清楚地看到,在x = 0.98之后,样条曲线难以逼近数据。

当然,有一些方法可以在此更改点之后获得更好的逼近度,例如,通过手动设置较小的平滑参数或较高的自由度。但是,我们将走向另一个极端。请记住,惩罚和自由度都是一项全球措施。在x = 0.98之后,增加的模型复杂度将获得更好的近似值,但也会使其他部分变得更加坎bump。现在让我们尝试一个具有45自由度的模型:

1
2
3
4
worse <- smooth.spline(x, y, all.knots = TRUE, df = 45)
worse.pred <- predict(worse, x)$y
plot(x, exp(y), main = expression(Inventory %~% ~ beta))
lines(x, exp(worse.pred), col = 2, lwd = 2)

worse fit

如您所见,曲线凹凸不平。当然,我们已经过拟合了50个数据集和45个自由度。

实际上,您最初对smooth.spline()的滥用是在做同一件事:

1
2
3
4
5
6
7
8
> mySpline
Call:
smooth.spline(x = results$beta, y = results$inventoryCost, penalty = 999999)

Smoothing Parameter  spar= -0.8074624  lambda= 3.266077e-19 (17 iterations)
Equivalent Degrees of Freedom (Df): 45
Penalized Criterion: 5.598386
GCV: 0.03824885

糟糕,自由度为45,过拟合!


我不认为您应该使用/想要splinefun。我建议改用GAM:

1
2
3
4
5
6
7
8
9
library(mgcv)
fit <- gam(inventoryCost ~ s(beta, bs ="cr", k = 20), data = results)
summary(fit)
gam.check(fit)
plot(fit)

plot(inventoryCost ~ beta, data = results, col ="dark red", , pch = 16)
curve(predict(fit, newdata = data.frame(beta = x)), add = TRUE,
      from = min(results$beta), to = max(results$beta), n = 1e3, lwd = 2)

resulting plot